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Minimum description of the onset of pipe turbulence?
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Abstract. To demonstrate essentials of the mechanism for the onset of turbulence in a pipe at Re = 2000,
48 degrees of freedom are enough. The derivation from the Navier-Stokes equation uses a novel type of
modes which guarantee linear stability. For the reduction of the nonlinear interactions, the modes are
grouped in 3 blocks. Facilitated by these simplifications the interdependence between linear and nonlinear
processes is analysed, however, just for a special example. A phenomenon resembling backflow is identified.

PACS. 47.27.Cn Transition to turbulence – 47.20.Ft Instability of shear flows – 47.11.+j Computational
methods in fluid dynamics

1 Introduction: Scrutinizing the clockwork

Various hydrodynamic flows, including Hagen-Poiseuille
flow through a pipe, are linearly stable but become tur-
bulent nevertheless. The mechanism which leads to the
transition from the laminar to the turbulent flow seems
to be a constructive interplay between the linearly driven
transient growth of disturbances and the nonlinear inter-
actions of the sufficiently strengthened deviations from the
laminar flow ([1], see also [2] for a recent compilation of
references). The energy for the transient growth comes
from the mean flow imposed by the external conditions. It
is the nonnormality of the linearized flow equations which
implies a subdivision of all perceivable disturbances: there
is one set of modes, which we call the “providers”, which
fetch the energy from the mean flow, and there is the
complementary set of modes, denoted as the “consumers”,
which dissipate the energy but determine the features of
the turbulent flow. A positive feedback is constituted if
these consumers interact to excite new providing modes.
In contrast to the exponential growth of small deviations
from an unstable flow, the nonnormal-nonlinear interplay
leads to an algebraic increase of disturbances but is simi-
larly effective.

This transition mechanism has many still unexplored
features. In particular, the details of the nonlinear inter-
actions are unclear yet. Also, the positive feedback loop
cannot be understood in an infinitesimal time step, as it is
possible in truely unstable situations via those eigenmodes
whose eigenvalues have a positive real part. In the linearly
stable but nonnormal situation of pipe flow the providing
modes cannot regenerate themselves: nonnormality holds
within subspaces of modes with fixed azimuthal and axial
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wave numbersm and β; these modes cannot interact. Non-
linear interactions on the other hand are possible only for
different [m|β]-subspaces, which are orthogonal and thus
normal to each other.

To analyse the feedback which leads from laminar to
turbulent flow one thus has to integrate the equations of
motion over finite times. This paper intends to study this
by solving the Navier-Stokes equations reduced to a fi-
nite space of appropriate modes. It will turn out that for
Re = 2000 already 48 such modes suffice, if properly cho-
sen, to constitute a successful feedback loop. This dimen-
sion is much less than the common eigenmode expansions
seem to indicate but much more than in true instability
transitions, where just one eigenmode with a positive real
part of its eigenvalue is necessary and sufficient.

We concentrate on the cooperation between nonnor-
mality and nonlinearity to feed and to sustain distur-
bances of the laminar flow, but do not study the phase
space structure once the turbulent state has been reached.
As it has been reported [3,4] for the case of plane Cou-
ette flow, there may also be chaotic repellors or unstable
stationary states in Poiseuille pipe flow. This is not con-
sidered in the present paper.

Our aim is to contribute to our understanding of the
basic mechanism for the onset of turbulence in pipe flow
similarly as an old-fashioned watchmaker examines ev-
ery cogwheel of a clockwork when he intents to repair
it. So our method differs from previous work with low-
dimensional models: we let the Navier-Stokes equation de-
cide which degrees of freedom it needs rather than indulge
ourselves with contrived models.

The notions and numerical details we use are the com-
mon ones, see e.g. [1]. We shall repeat them here as far as
necessary to make the paper selfcontained. A slight change
of terminology, however, is necessary. It is induced by
facts that we want to explain now. Namely, with growing
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Reynolds number the linearized Navier-Stokes operator
gets increasingly nonnormal, such that its eigenfunctions
become more and more parallel and therefore need larger
and larger coefficients when they are to represent an ar-
bitrary flow as a series expansion. In a simplified manner
one may say that the set of eigenfunctions of the nonnor-
mal linear Navier-Stokes operator spans only a subspace
in the space of all flows. In [1] the flow fields that can
be represented by series with reasonably small coefficients
were called daughters while all others became mothers. By
this definition the daughters are flows which are more or
less contained in the space spanned by the eigenfunctions
of the linear Navier-Stokes operator while the mothers are
in essence perpendicular to that space. The idea was that
the mothers are able to provide the energy (which they
gain from the mean flow) that the daughters then con-
sume. This, however, turned out to be not entirely correct.
It is true that all daughters consume energy, but not all
mothers provide it. Energy can be drawn from the basic
flow only by such flow disturbing modes which belong to
the complement of the eigenspace and are not detrimen-
tally damped. It would thus have been better to call the
daughters fit functions and the mothers misfits, to under-
line their relation to the direction, in which the eigenfunc-
tions bunch, and to state that just a few misfits induce
amplification, namely those with small damping.

The two-dimensional models, which were built to make
linear amplification despite linear stability comprehensible
[1, Sect. 4.2], [2], [5, Sect. 5], [6,7], can lead to a misin-
terpretation of the fit-misfit mechanism. In these mod-
els there exists essentially only one damping constant. In
realistic systems with more degrees of freedom multiple
damping occurs.

To eschew misunderstandings by using terminologies,
which refer only to the geometry of the eigenfunctions and
dismiss their eigenvalues (daughters-mothers, fit-misfit),
we better discriminate flows as providers and consumers.
To define them we measure the quality of a provider by
the amplification of the energy of such a disturbance,
which develops according to the Navier-Stokes equation
linearized about the laminar flow within a finite time. We
speak of a consumer if the disturbance experiences no am-
plification at all.

For the analysis of turbulence we will replace the for-
merly used Stokes modes (i.e., the eigenmodes of the
linearized Navier-Stokes operator with no laminar back-
ground at all) or the Hagen modes (i.e., the eigenfunctions
of the linearization about the Hagen-Poiseuille profile) by
a new, equivalent set of functions neatly ordered by their
quality. We will have the consumers with the most waste-
ful dissipation of energy at the left end (lower values of
the labels) of this set of modes, whereas the most power-
ful providers will appear at the right end (higher values of
the labels). This is achieved by a reorganization of the Ha-
gen modes and a subsequent orthogonalization. The pro-
cedure (the QR decomposition, see later) guarantees the
linear stability, which the full Navier-Stokes equation has,
for all expansions of its solutions in terms of any number
of these new modes – see Section 2.

The new functions, denoted as “q-modes”, ease the
interpretation of the linear processes. We will use this to
accomplish two aims.

First, the system of differential equations describing
pipe turbulence will be reduced to its minimum size:
only 24 complex amplitudes turn out to be necessary at
Re = 2000 (Sects. 3 and 4). Byproducts of these investi-
gations are the ideas of a “powerhouse”, i.e., the commu-
nity of all providers, and of the “consumption” – compare
Section 4. These ideas may be helpful to transfer our meth-
ods for pipe flow to other, more complicated types of flows.

Second, the separation into providers and consumers in
the linear processes facilitates a closer look to the nonlin-
ear mechanisms. Without nonlinearity the energy transfer
from the basic flow to the disturbance would happen but
once. To allow for long-lasting turbulence the nonlinear-
ity must at times refuel the powerhouse. By way of an
example we shall show how this works, with all the details
(Sect. 5).

We do not intend to quantitatively compare with full
numerical simulations. Such systematic comparison still
has to be done, and we hope the present work will open
way to do it. Both those large N simulations as well as our
small N calculations, which qualitatively reproduce and
demonstrate the intricate cooperation between the linear
transient amplification due to nonnormality and the non-
linear interactions on a small N mode Galerkin basis, pro-
vide approximate solutions to the Navier-Stokes equation.
Having this in mind we take liberty to describe our flow
fields in conventional terms like turbulence, double thresh-
old, profile, etc., being aware that this is not understood
quantitatively.

Thus, when using the notion turbulence or turbulent so-
lution we mean the chaoticity, i.e., the irregular temporal
behavior of the solutions but also their qualitative similar-
ity to some observed features of turbulence. One can com-
pare properties derived from our computed approximate
solutions with the corresponding measured ones. Three
such observable features will be discussed in this paper:
(a) the irregular fluctuations of the flow, (b) the double
threshold for the onset of turbulence, i.e., the observation
that the Reynolds number as well as the initial distur-
bance must exceed certain values, and (c) the flattening
of the calculated approximate velocity profile for the pipe
flow, cf. Section 6. In any case, our aim is qualitative,
structural, not quantitative comparison with turbulence.

Of course, we offer a summary in Section 7. An
overview on the physics and the mechanism of the onset
of shear turbulence is given in reference [16].

2 q-modes

Flow through a straight pipe has axial symmetry and is
translational invariant. The first property allows for so-
lutions of the linearized Navier-Stokes equation propor-
tional to eimϕ where ϕ denotes the azimuthal angle and
m an integer. The second property permits factors eiβz,
with z as coordinate along the pipe’s axis and β as a real
wave number.
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Hence one may collect all modes in blocks, which
are distinguished by their [m|β] values. Linear interac-
tion, i.e., the coupling of the disturbance to the basic
Hagen-Poiseuille flow, mixes the modes only within the
blocks, whereas for nonlinear interactions as defined by
the Navier-Stokes nonlinearity a mode needs a partner in
a different block, or two modes in the same block unite to
excite a mode in a different block.

In this section we will analye the linear interactions,
i.e., the coupling of the disturbance to the laminar back-
ground flow, and hence study every [m|β] block on its
own.

Stokes modes, being the eigenfunctions of the lin-
earized Navier-Stokes equation for Re = 0, have the in-
valuable advantage of mutual orthogonality. But they lack
appropriateness to the flow at sizable values of Re. It
takes, for example, at least 15 Stokes modes per block
to approximate a flow at Re ≈ 2000. If one tries to get on
with less, linear instabilities arise merely because the rep-
resentation gets too bad although the flow actually is sta-
ble. Hence reducing the number of Stokes modes generates
a system of differential equations wanting even structural
similarity with real pipe turbulence.

Hagen modes, on the other hand, are defined as eigen-
functions of the Navier-Stokes equation linearized about
the laminar Hagen-Poiseuille flow for every desirable value
ofRe. But, because this linear operator is nonnormal, they
are not mutually orthogonal, even become almost degener-
ate (i.e., nearly parallel) for increasing Re and thus wreck
numerical stability when the solution of the full Navier-
Stokes equation is expanded in their terms. Moreover it is
not the best idea to interpret the full Navier-Stokes solu-
tion in the Hagen mode representation. Namely, as shown
in [1] Figures 26 and 27, the peculiarities of pipe turbu-
lence then appear as minute differences of huge expansion
coefficients.

Best seems an expansion in terms of a new set of modes
which we call the providers and consumers. Their quali-
tative definition given in Section 1 is quantified here by
a computational prescription: in a given space of flows
we first construct an orthonormal set of functions qν(r)
and then follow the evolution of the disturbances uν(r, t)
originating from the qν(r) by the linearized Navier-Stokes
equation

Luν(r, t) = ∂tuν(r, t) with uν(r, 0) = qν(r).

Lu := −(UHP∇)u− (u∇)UHP −∇p−Re
−1∇×∇× u

(1)

defines the linear operator with the basic Hagen-Poiseuille
flow UHP and the pressure p. The Reynolds number Re
is defined in terms of the laminar profile’s center velocity
and the pipe’s radius. To respect incompressibility of the
flow, we solve (1) as vorticity equation. Energy and quality

of the disturbance are defined by

Eν(t) : =
1

2

∫
(pipe)

uν(r, t)2dτ,

Qν(t) : = Eν(t)/Eν(0) with

t = tmax,ν or

t =
√
Re. (2)

If Qν(t) gets greater than one for t > 0, we call qν(r) a
provider and specify its quality by maxtQν(t); the corre-
sponding time be tmax,ν . However, all other functions, i.e.,
the consumers, have tmax,ν = 0 and Qν(0) = 1. Therefore
Qν(tmax,ν) wipes away all differences between the con-

sumers. If these differences matter, we use Qν(
√
Re) as a

measure of the quality of the νth mode. t =
√
Re was cho-

sen since an estimate yields tmax ∝
√
Re for the providers

at a given Reynolds number, see equation (60) in [1].
Practically the functions qν(r) are constructed as

columns of a unitarian matrix. First, we put the Hagen
functions hν(r) defined as the eigenfunctions of L

Lhν(r) = hν(r)λν (3)

as columns into a matrix H and, second, execute a QR
decomposition:

H = QR with Q−1 = Q† and

R = {Rij |Rij = 0 for i > j}. (4)

Q is the afore-mentioned unitarian matrix. Devoting Q
as its symbol is a sacrosanct custom in linear algebra; Q
should not be confused with the qualities Qν(t). However,
as R is a right matrix, with nonzero elements only in its
right upper half, the QR decomposition can be construed
as providing an orthogonalization: the primary vectors are
put in as the columns of H, while the orthonormalized
vectors come out as the columns of Q.

In pure mathematics one would prefer the Gram-
Schmidt orthogonalization, but numerically the Gram-
Schmidt method is not stable. Thus we accomplish theQR
decomposition by Householder’s algorithm [8–11], which
is stable. The resulting orthogonal vectors are, apart from
factors of phase, unique.

The interpretation of the QR-decomposition is simpli-
fied by the following theorems. They are nothing than spe-
cial extracts from Schur’s reduction of an arbitrary square
matrix to triangular shape [12], given here only to empha-
size certain points that are important for our work.

Theorem I

If the eigenvalue problem is defined by LH = HΛ and
H = QR, with Q as unitarian and R as right matrices,
then L̃ := Q†LQ is a right matrix too.

Proof: from LH = HΛ it follows Q†LQQ†H = Q†HΛ.
Hence L̃R = RΛ or L̃ = RΛR−1. Now, since R is a right
matrix, the inverse R−1 is right as well. Λ is just the diag-
onal matrix with the eigenvalues λν , hence a special right
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h̃µν =


0, if µ = N,N − 1, . . . , ν + 1;
1, if µ = ν;∑ν
κ=µ+1 L̃µκh̃κν

/
(L̃νν − L̃µµ), if µ = ν − 1, ν − 2, . . . , 1.

Table 1. The matrix L̃ := Q†LQ of linear interactions for the 8-mode system in the block [+1|0.5] at Re = 2000. The matrix
is based on the backward sequence defined in (5) with N = 8. The asteriks signals that this matrix element is bigger than the
absolute value of the diagonal element in the same column.

1 2 3 4 5 6 7 8

−0.13 6e−2 9e−2 2e−2 2e−1 6e−2 7e−2* 7e−2* 1

0 −0.12 1e−1 9e−2 3e−2 5e−2 2e−1* 5e−2* 2

0 0 −0.12 7e−2 6e−2 1e−1* 3e−1* 1e−1* 3

0 0 0 −0.10 2e−2 6e−2 2e−1* 2e−2 4

0 0 0 0 −0.08 6e−2 1e−1* 2e−1* 5

0 0 0 0 0 −0.08 1e−1* 2e−1* 6

0 0 0 0 0 0 −0.06 3e−2 7

0 0 0 0 0 0 0 −0.04 8

matrix. And a product of right matrices is again right.
q.e.d.

Theorem I makes the realistic linear interaction op-
erators L̃ directly comparable to the analytical toys that
where created to make the peculiarities of pipe turbulence
comprehensible [1, Section 4.2], [2], [5, Section 5], [7].

An example as in Table 1 exhibits the essentials.
At first it appears puzzling because L̃ = {L̃µν|µ, ν =
1, . . . , 8} is a complex matrix, whereas in the table only
real numbers are given. This is the solution: the sub- and
superdiagonal elements L̃µν , µ 6= ν are represented by

their moduli |L̃µν |. But in the diagonal there appear the

real parts <L̃µµ which are also the real parts of the eigen-

values of L̃, describing by their negative sign the decay of
the Hagen functions, see Theorem II below.

The meaning of this format clears up when the lin-

earized equations of motion dtaµ(t) =
∑N
ν=1 L̃µνaν(t)

with amplitudes aµ(t) are considered. We can set aµ(0) =
δµλ and estimate what the other amplitudes aµ(t), µ 6= λ
do for t > 0. Namely, in first order the maximum size of
those amplitudes is proportial to |L̃µλ| times the lifetime

of the initially dominant aλ(t), which is −1/<L̃λλ. Hence
comparing the superdiagonal elements with the numbers
in the diagonal we can guess whether an amplitude aµ(t)
with a smaller value of its index µ < λ gets stronger than
its pusher aλ(0). To make this visible, the matrix elements,
which are bigger than the absolute value of the diagonal
element in the same column, are distinguished by aster-
isks.

Table 1 suggests: providers appear for λ = 8 and λ = 7
with up to 6 asterisks and ratios −|L̃µλ|/<L̃λλ as high as
5. λ = 6 still has 1 asterisk, but the respective ratio is
barely bigger than 1; hence q6 is at most a weak provider.
All this is in keeping with Figure 4, which will be discussed
later in more detail.

Moreover, the table exhibits that the providers q8 and
q7 cause significantly different quality spectra. q8 is a poor
provider of q7 and q4, whereas q4 is a favorite product of
q7. To know this is valuable when one scrutinizes a solu-
tion of the nonlinear equations and wants to discriminate
if a current amplification was caused by the providers q7

or q8.
Since L̃ is a right matrix and since it comprises all

linear interactions, energy can flow only from higher to
lower label value q-modes when the nonlinearities are sus-
pended. Consequently the highest q-mode, here λ = 8, can
be fed exclusively using the nonlinear manger. To some ex-
tent this is even true for λ = 7 because it is nourished but
poorly by the linear interaction with λ = 8.

Theorem II

The diagonal of the matrix L̃ = Q†LQ = {L̃µν |µ, ν =

1, . . . , n} is occupied with the eigenvalues of L: L̃νν = λν

Proof: one can verify this by direct calculation since
the eigenvectors are given by

see equation above

h̃µν denotes the µth component of the eigenvector that be-

longs to the eigenvalue L̃νν . Moreover L̃ emerges from L
by a similarity transform which cannot change the eigen-
values, thus L̃νν = λν . q.e.d.

Theorem II warrants that the QR algorithm cannot
import linear instabilities. So in (4) we can cancel Ha-
gen functions whenever they appear to be less impor-
tant and thus reduce the number of q-modes to be taken
into account. With any other orthogonal system we can-
not guarantee this. For example, reducing the number
of Stokes functions below a certain limit depending on
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Re=2000

m=1  β=0.5λr

-0.1

-0.2

-0.3

-0.4

λ i
    -0.2     -0.4

1
2 35

67 8
11

13

15

Fig. 1. The eigenvalues λr+iλi of the linearized Navier-Stokes
equation (1) are sorted according to increasing damping −λr.
So eigenvalues 1 to 13 figure the “three-fingered swear hand”,
while the higher eigenvalues form the “arm”, belonging to the
deeply-damped modes. One of the central tasks of this study
is to show that the powerhouse of pipe turbulence is built with
the eigenfunctions belonging to the swear hand.

the Reynolds number induces linear instabilities that have
nothing whatsoever to do with the physical problem. For
the same reason a construction of modes based on singu-
lar value decomposition is suitable only if it is equivalent
with our simpler prescription.

The sequence of orthogonalization, in other words, the
sequence of the columns in H influences the structure of
the columns in Q. This is of utmost importance if the
number of modes is to be reduced. Namely only the modes,
which come last in the orthogonalization, can be omitted.

The following procedure produces the best results.
We order the Hagen functions according to their dissi-
pation, i.e., first comes h1(r) with the largest real part
of its eigenvalue, i.e., the smallest damping, confer with
Figure 1. To construct anN -dimensional basis we consider
the backward sequence

H := {hN ,hN−1, . . . ,h1} (5)

and execute QR decomposition. Then, in Q, the con-
sumers fill the left columns (with the small values of the
labels), whereas the providers are found in the rightmost
columns (larger values of the labels). In most cases the
functions are ordered with increasing quality correspond-
ing to increasing value of the label.

An example is given in Figure 2. When we execute
QR decomposition with 20 Hagen modes hν stuffed into
H as columns, 20 q-modes qν appear as columns inQ. The
space spanned by the qν is, of course, invariant under the
ordering of the hν in H, yet for the properties of the in-
dividual qν the order matters much. To demonstrate the
essentials, results of the forward sequence h1,h2, . . . ,h20

(open circles) are contrasted with those of the backward
sequence (5) h20,h19, . . . ,h1 (full circles). Equation (1)

was solved, and Qν(
√
Re) taken as a measure of the qual-

ity, see equation (2). In the case of the backward sequence
the qν are sorted according to increasing qualities, with

m=1  β=0.5

ν
5      10     15     20 

l og10 Qν( √2000)

-10

  0

Fig. 2. The qualities of the q-modes from the forward (open)
and the backward (closed symbols) sequence of the Hagen
modes hν . Qν(tmax,ν) was replaced by Qν(

√
Re) to exhibit

the differences between the consumers. ν numbers the modes;
there is no symbol for the kinematic viscosity in this paper.

the most powerful providers at big ordinals ν. This is not
so for the forward sequence.

To understand why the backward sequence is advan-
tageous, consider the forward sequence

H := {h1,h2, . . . ,hN}.

QR = H means in its first line q1R11 = h1 so that the
first column of Q and that of H are identical up to a nor-
malization. The second line q1R12 + q2R22 = h2 shows
that the part of h2, which is parallel to h1, is covered
by q1. q2 is needed only to deal with the orthogonal re-

mainder of h2. In the last line
∑N
ν=1 qνRνN = hN , thus

qN appears as that column in Q which is orthogonal to
the first N − 1 columns of H. In the sense discussed in
Chapter 1 it therefore contains the coefficients of the most
misfit function. Nevertheless qN does not represent the
best provider since it consists mostly of hN and other
strongly damped Hagen modes. For a good provider, or-
thogonality to most eigenfunctions must come with small
damping. Exactly this is achieved by the backward se-
quence.

What happens if the number of Hagen functions and
hence of q-modes is systematically reduced? To answer
this, the sequences

h20, h19, ... h1

h16, h15, ... h1, h17, h18, h19, h20

h13, h12, ... h1, h14, h15, h16, h17, h18, h19, h20

h12, h11, ... h1, h13, h14, h15, h16, h17, h18, h19, h20

h11, h10, ... h1, h12, h13, h14, h15, h16, h17, h18, h19, h20

were processed by QR, and the qualities Qν(tmax,ν)
were computed solving the linearized Navier-Stokes
equation (1). It must not be forgotten that, according to
QR, only functions on the right-hand side can be omit-
ted. For example, in the 11-sequence only the first 11 Ha-
gen functions will be included in the solutions of the full,
nonlinear Navier-Stokes equation which we will investi-
gate in the next sections. The q-modes caused by the ap-
pendix h12, · · · ,h20 will be omitted there. Here, however,
we have computed all 20 qualities in order to get a feeling
what is lost if we forget about the Appendix. The results
are shown in Figure 3. In the 20-sequence we discover four
providers, with qualities clearly better than one. Reducing
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Re=2000

m=1
β=0.5

ν
5      10     15     20 

Qν(t max, ν)

10

20

30
201613

1211

Fig. 3. The qualities of the q-modes for various sequences with
N = 11, 12, 13, 16, or 20 modes. Here we used the measure of
quality defined by Qν(tmax,ν) with an individual time tmax,ν

for every mode. It is more precise for the providers.

the number of included Hagen functions to 13 only shifts
the quality spectrum to the left. The four providers are
still included. The most powerful provider, in particular,
does not diminish its quality. But in the 12-sequence (fat
dots connected by the dashed lines) the most powerful q-
mode q12 lost part of its quality to q13, which is assigned
for later omission. Compare this with the situation of the
eigenvalues in Figure 1. Quality gets really bad for the
11-sequence and, of course, for sequences with less modes.
For the 11-sequence (big open circles connected by the
dotted lines), only two good providers are included, viz.
q11 and q10. The quality prevails now in q-modes that are
to be omitted.

Further deterioration shows up in Figure 4. Down from
the count N = 8 there are at most two providers. The
9-sequence plays a somewhat special role as it produces a
provider that is better than the best in N = 10.

With decreasing number of q-modes we expect our rep-
resentation of the Navier-Stokes equation to lose its abil-
ity of describing pipe turbulence. However, where exactly
this happens must be tried by solving the full nonlinear
system.

3 Closed communicating classes

The system of modes can by reduced in two ways: by
diminishing the size of the blocks and by lessening the
number of blocks. The second way will be pursued in this
section.

Of the full Navier-Stokes equation

∂tU = −(U∇)U−∇P −Re−1 ∇×∇×U, (6)

any mode expansion, if its elements are just proportional
to eimϕ eiβz, evinces the selection rules for the nonlinear
interaction

mκ +mλ = mµ, βκ + βλ = βµ. (7)

Here κ and λ are the indices of the modes in the nonlinear
interaction, while µ characterizes a mode behind the par-
tial time derivative, to which the interaction contributes.
In other words, κ and λ describe input blocks which excite
modes in the output block µ: [mκ|βκ]∗[mλ|βλ]→ [mµ|βµ].

Re=2000

m=1
β=0.5

ν
2      4      6      8      10 

Qν(t max, ν)

 5

10

10
9

8

7

Fig. 4. Similar to Figure 3, this picture displays the qualities
of the 7, 8, 9, 10-mode systems.

In reference [1] checks with 9 or even 10 blocks were
carried out to ensure the reliability of the results. Mostly,
however, the following 6-block system was engaged:

[−1|1.0], [0|1.0], [+1|1.0], [−1|0.5], [0|0.5], [+1|0.5].
(8)

The numbers in the parentheses represent the values of
[m|β]. To secure the reality of the solution, 6 further blocks
with negative β have to be added, but these are coupled
to the already considered ones by complex conjugacy, i.e.,

[−m| − β] ≡ [m|β]. (9)

The combination of equations (7) through (9) results in
the following multiplication table[

0|1.0
]
∗
[
−1|0.5

]
→
[
+1|0.5

] [
−1|1.0

]
∗
[
−1|0.5

]
→
[
0|0.5

][
0|1.0

]
∗
[
0|0.5

]
→
[
0|0.5

] [
−1|1.0

]
∗
[
0|0.5

]
→
[
−1|0.5

][
0|1.0

]
∗
[
+1|0.5

]
→
[
−1|0.5

][
+1|1.0

]
∗
[
0|0.5

]
→
[
+1|0.5

] [
−1|0.5

]
∗
[
0|0.5

]
→
[
−1|1.0

][
+1|1.0

]
∗
[
+1|0.5

]
→
[
0|0.5

] [
−1|0.5

]
∗
[
+1|0.5

]
→
[
0|1.0

][
0|0.5

]
∗
[
0|0.5

]
→
[
0|1.0

][
0|0.5

]
∗
[
+1|0.5

]
→
[
+1|1.0

]
. (10)

This table, equation (10), exhibits two subsets of closed
communicating classes contained in (8):[

0|1.0
]
,
[
0|0.5

]
(11)

and [
0|1.0

]
,
[
−1|0.5

]
,
[
+1|0.5

]
. (12)

(11) is of no use for the description of pipe turbulence as
it consists only of axisymmetric modes that cannot draw
energy from the basic flow. But (12) has the salient prop-
erties of the much larger systems, in particular it describes
the double threshold, see Figure 5. Yet it is more vigorous:
it allows for turbulence already at Reynolds numbers as
low as Re ≈ 1000, and the energy of the turbulent dis-
turbance Edis(t) becomes larger than in the 6-block sys-
tem. One can understand this from the data presented in
Figure 13 of [1]: the modes of the block [+1|0.5] deliver
stronger energy amplification than those of block [+1|1.0],
let alone those of [+1|0.25] or with m = 2 or m = 3.
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Re

0     1000   2000  

Edis (0)

10-4

10-3

10-2

10-1

Fig. 5. The double threshold for the 3-block system (12)
with 20 Stokes modes per block. A circle indicates a quick
return to laminarity, whilst a fat dot represents a turbulent
run. The initial conditions were set as am=0,β=−1.0,ν=2(0) =
am=−1,β=−0.5,ν=2(0) = a0 with the a...(t) as amplitudes of the
Stokes modes. a0 is a real number tuned to yield the initial
energy Edis(0). All other amplitudes were 0 at the beginning.
These computations were done with the Stokes functions be-
cause we do not need the q-modes to find the closed commu-
nicating classes. The two ways of reduction, viz. lessening the
count of blocks and diminishing their size, are independent.
However, it was checked that computations with 20 q-modes
produce the same diagram and, apart from rounding errors,
even the same runs (at least as long as the time intervals are
limited).

In other words: extensive numerical examination has
shown that blocks with [m = 1|β ≈ 0.5] give the most
powerful energy amplification attainable in pipe flow. The
block [0|1.0], on the other hand, sponges on energy. We are
tempted to discard it, too, yet it is indispensible for the
nonlinear interaction: without [0|1.0] we cannot form a
closed communicating class.

In the same wise as the 3-block systems are closed com-
municating sub-classes in 6-block systems, the 6-systems
themselves are just closed communicating classes in the
even larger 9- or 10-systems. In this sense the 3-block sys-
tems are the smallest ones to describe salient properties
of pipe turbulence.

The idea of a closed communicating class stems from
the theory of Markov chains, see e.g. [13].

4 Powerhouse and consumption: minimum
mode number

We now have the tools to systematically reduce the de-
grees of freedom. We take the vorticity of the nonlinear
Navier-Stokes equation (6), use N q-modes by backward
sequences (5), sort out the 3 blocks (12) and transform the
partial differential equation (6) into 3 × N ordinary dif-
ferential equations for complex amplitudes by Galerkin’s
familiar procedure.

Some representative solutions are recorded in Figure 6
by their energy of disturbance Edis(t). At least two pecu-
liarities are remarkable.

The initial decrease of Edis(t) comes much more from
the energetic redistribution than from the loss by viscosity.

E.g. in the 3×20–mode system, the 2 initial modes excite
the residual 58 modes until there is the right nonlinear
interaction to prepare linear energy amplification; in the
3×7–mode system only 19 sleeping modes must be roused.
So it is not by accident that Edis tumbles faster in the
3×20–mode system than in its 3×7–mode comrade. This
is one observation to underline the importance of phase-
space investigations.

After the initial drop of Edis(t) the N -dependence of
the time development exhibits the features predicted in
Figures 3 and 4 for the (linear) qualities Qν . Just quick
returns to laminarity, but no turbulent ups and downs are
observed in the 3× 7–mode system and smaller ones. The
3×8–mode system produces transients typically fading at
t ≈ 300, yet with turbulent interims. Most remarkable are
the huge fluctuations in the 3×13–mode system that hus-
tle to the infinities for t > 100. The 3× 20–mode system,
however, looks again reasonable.

The difference between the 3×20– and the 3×13–mode
systems is easily understood with the help of Figure 3:
in both systems there are 4 powerful providers granting
about the same amplifications. But the consumers are
more numerous in the 3×20–mode system, and they con-
sume much more energy since they comprise the deeply-
damped Hagen modes h14, · · · ,h20, compare Figure 1.

One can think of this as being due to a balance be-
tween the powerhouse and the consumption. The power-
house would be the set of all providers, while all other de-
grees of freedom would constitute the consumption. The
3× 13–mode system is thus the most overpowered engine
we can have at Re = 2000: it has the complete power-
house, whereas the consumption is minimized. When the
count of modes drops below N = 13, the powerhouse is
gradually destroyed until it cannot supply the disturbance
with sufficient energy. This limit shows up at N = 8 and
is definitely crossed at N = 7.

Therefore a system with 3×8 complex degrees of free-
dom seems to provide the minimum description of pipe
turbulence at Re = 2000. Nevertheless we cannot exclude
the possibility of lowering this number. Namely, we con-
sidered an equal number of modes in all three blocks. But
the block [0|1.0] is structurally different from the blocks
[−1|0.5] and [+1|0.5], so [0|1.0] might do with less modes.

Having understood the ideas of the powerhouse and
the consumption, one may even tame the 3 × 13–mode
system. All one has to do is to take the sequence
h13,h12, . . . ,h1 and to replace some of the weakly-
damped (lower label values) Hagen modes by their deeply-
damped brethren.

5 Refueling the powerhouse

What has been discussed over and over again was how a
provider pushes the consumers thus causing amplification
of the disturbance. But what takes care of the provider
when it is finished, i.e., when its energy is exhausted?
Clearly, only the nonlinearity! The first kind of nonlin-
earity (a mode cooperates with a partner in a different
block) becomes effective when at least one mode in the



350 The European Physical Journal B

Table 2. Actions from the interactions between blocks [0|1.0] and [+1|0.5]. The block symbols are abbreviated as 0\ + 1 to
appear in the upper-left corner of the table. On output the actions are total; everything that appears in the block [−1|0.5]
contributes additively to them. The computations were done with the 3-block system and 8 modes per block. Therefore this
table is closely related to Figures 4 and 6, and to Table 1. Of all numbers at most two leading figures are given because the
actions will be used for estimates only.

0\+ 1 1 2 3 4 5 6 7 8

1 5300 950 20000 2000 120000 7200 2500 130000

2 900 46 660 210 11000 6200 860 6200

3 7100 81 13000 1700 61000 15000 2300 36000

4 720 9 230 20 9400 2100 690 3100

5 7 640 210 11000 310 290 3500 410

6 130 540 220 420 1200 78 610 650

7 2800 2200 25000 1200 100000 130000 1900 140000

8 860 200 790 160 440 2700 290 2400

Table 3. Akin to Table 2. Here the actions generated by the q-modes in the blocks [+1|0.5] and [−1|0.5] are presented. The
actions comprise everything roused in block [0|1.0].

+1\ − 1 1 2 3 4 5 6 7 8

1 58 15 150 8 860 370 560 1400

2 10 15 52 44 94 27 460 120

3 123 53 330 34 1000 1200 1700 780

4 12 23 30 300 61 150 790 130

5 890 130 1200 34 6200 6900 6200 96000

6 430 28 960 70 6300 9200 3500 3500

7 1000 890 2500 1100 5100 5600 14000 34000

8 1400 99 680 91 89000 2900 17000 230000

block [0|1.0] and one in [+1|0.5] ally to rouse a provider
in [−1|0.5]. Yet this is not sufficient: the modes in [0|1.0]
must be kept alive by the second kind of nonlinear in-
teraction (two modes in the same block unite to excite
a mode in a different block), viz. between blocks [−1|0.5]
and [1|0.5].

To find the thread how these two kinds of nonlineari-
ties work, we proceed as follows: for the initial conditions
we endow only two q-modes in two different blocks with
non-zero amplitudes. Namely, two modes excited in two
different blocks is minimum for the initiation of nonlinear
interactions. With this peculiar initial condition the full,
nonlinear differential equations are solved and the am-
plitudes in the third block are recorded. Based on these
amplitudes, the computation of the actions

SMµ
Kκ,Λλ =

∫ tmax

0

a2
Mµ(t)dt

/(
a2
Kκ(0)a2

Λλ(0)
)

(13)

is straightforward. The indices K,Λ,M = +1, 0,−1 are
cyclical block labels. They are meant to discriminate
blocks, with +1 as shorthand for [+1|0.5], 0 for [0|1.0]
etc. The lower case indices κ, λ, µ = 1, . . . , N denote mode
labels. The quotient in (13) is to be construed as a lim-
iting value for a2

Kκ(0) → 0 and a2
Λλ(0) → 0. In other

words, we choose the initial amplitudes of the modes Kκ

and Λλ small enough to keep nonlinear feedback between
these modes themselves negligible since we want to see just
what blocks K and Λ do to M . Also subsequent interac-
tions e.g. between K and M or Λ and M would destroy
clearness.

Therefore, in the limit considered here, the amplitude
aMµ(t) in the third block starts at 0 for t = 0, a2

Mµ(t) then
reaches a maximum at tmax, and finally the amplitude
approaches again 0. So we might extend the integration
to infinity, but don’t do it to save computational time. Of
course, here tmax depends on all 6 labels, but in practice
it is always of the order

√
Re.

For simplicity it sometimes is better not to specify the
individual modes on output. We then prefer to compute
the sum of all amplitudes squared in the third block, i.e.,
twice the energy in this block, and omit the mode index
µ to write the sum as a2

M(t).

Using the action
∫ tmax

0
a2
M(t)dt instead of the energy

a2
M(t)/2 has the advantage of magnifying differences. For

the sustenance of turbulence, the linear processes, which
can start again their effectiveness when a nonlinear inter-
action happened to rouse a provider, are important. Al-
though we want to expose the nonlinear interaction which
creates such a provider, we can make that more visible
by letting it grow under subsequent linear amplification.
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Table 4. Actions created by blocks [+1|0.5] and [−1|0.5], similar to Table 3. But the actions here are specified to measure only
the excitation of the 1st q-mode in block [0|1.0]. Notice the small size of these actions. One should expect them to contribute
1/8 to the total actions in Table 3 if one relies in statistical arguments.

+1\ − 1 1 2 3 4 5 6 7 8

1 0.004 0.005 1 0.08 4 10 0.3 5

2 0.010 0.02 0.9 0.04 1 9 0.5 5

3 0.7 0.2 0.6 0.2 27 43 19 140

4 0.2 0.3 0.02 0.4 28 30 3 99

5 2 1 22 4 4 56 92 2800

6 10 2 28 4 110 3 63 720

7 1 0.5 71 8 170 430 8 240

8 4 3 230 5 2500 560 340 190

But these secondary linear processes take time and are
thus better observed in the action.

And these are the lessons to be learnt from the Ta-
bles 2, 3, and 4, which comprise our results concern-
ing the strategy of the Navier-Stokes interaction to rouse
providers and thus to sustain turbulence.

Start with Table 2: in the interaction between blocks
[0|1.0] and [+1|0.5] the strongest actions are produced by
modes q1 and q5, q1 and q8, q7 and q5, q7 and q6, q7

and q8. The 1-5 interaction is especially valuable because
it works without the providers, which are discernible by
mode numbers 7 and 8.

A glimpse at Table 3 reveals: in the interaction between
blocks [+1|0.5] and [−1|0.5] strongest actions arise with
modes q5 and q8, q8 and q5, q8 and q8. This type of
nonlinearity cannot thrive without a provider.

Tables 2 and 3 contain total actions only. Table 4, by
contrast, presents actions specific for the viscously least
damped mode q1 in [0|1.0]. For we know from Table 2
that q1 plays a prominent role for the permanence of tur-
bulence. We find in Table 4 that modes q5 and q8 or q8

and q5 in [+1|0.5] and [−1|0.5] push q1 in [0|1.0] best, in
agreement with Table 3.

The conclusion is that as few as 5 modes might consti-
tute a perpetuum mobile of pipe turbulence, viz. both q5

and q8 in [+1|0.5] and [−1|0.5], and q1 in [0|1.0], all other
modes just featuring those beautiful turbulent ornaments.
This is demonstrated in Figure 6, which offers the tempo-
ral development of the energy of a disturbance calculated
with different sets of modes. Spectral analysis reveals that
the 5-8-1-5-8 mechanism is indeed present in various re-
generation phases. But there are also other growth cycles
with different spectral dominances, i.e., that mechanism
is nothing but a special case to regenerate turbulence.

To demonstrate that the 5-8-1-5-8 mechanism works
we look at Figure 7 which, together with the next figure
(Fig. 8), displays the signature of this process. It shows
an example how two consumers use the nonlinear inter-
action to rouse a provider, thus enabling amplification of
the disturbance.

At t = 0 the energy is concentrated in two blocks
[+1|0.5] and [0|1.0], and there it resides in two modes only:
q5 and q1. Their output appears in the third block, viz.

(a)

t
0     50     100 

Edis

0.0

0.2

0.4

0.6

20

13

8
7

(b)

t
0      400    800    

Edis

0.5

1.0

Fig. 6. (a) The energy Edis(t) of the disturbance obtained
from the 3-block systems with N = 7, 8, 13, and 20 modes per
block. Always the same initial conditions were imposed, namely
the least dissipating Hagen functions h1 in the blocks [+1|0.5]
and [0|1.0]. For h1 is contained in all sequences, irrespective
of N . The 7 and 8 mode systems do not have sufficient energy
supply and decay. The 13 mode system is properly fed but the
consumers, i.e., modes with strong viscous damping, are not
yet sufficiently included, thus the solution becomes diverging.
The 20 mode system fluctuates irregularly. (b) Longer time
solution (up to t = 1000) of the 3 block and 20 modes per block
system, Re = 2000. This provides a characteristic example
for the long lasting irregular fluctuations looking like chaos or
turbulence.

[−1|0.5]. Nonlinear feedback, for instance between blocks
[0|1.0] and [−1|0.5], is admitted but weak since the initial
excitations were chosen to be small.

Within a block energy flows only downward due to the
triangular shape of the linear interaction matrix L̃. An
impressive example of this law can be seen in the block
[0|1.0]; not even a morsel of intensity is spread to the
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ν
2 4 6 8 2 4 6 8 2 4 6 8

relative intensity

0.0

0.2

0.4

0.6

0.8

1.0

+1

[0
|1.

0]
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|0.
5]

Re=2000
t=3.45

Fig. 7. The relative intensities of the nonlinear 3 × 8–mode
system as they evolve within a finite time t. The initial val-
ues at t = 0 are indicated by the open circles. At t = 3.45
the distribution is represented by the full dots. The lines con-
nect intensities belonging to the same block: [+1|0.5], [0|1.0]
or [−1|0.5], +1 being shorthand for [+1|0.5]. For all times the
sum of intensities in every block is kept at unity; this is why
these intensities are qualified as relative.

ν
2 4 6 8 2 4 6 8 2 4 6 8

relative intensity
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Re=2000
t=3.56

Fig. 8. The same kind of relative intensities as in Figure 7.

higher modes. By the same argument we know that q8

in [−1|0.5] is exclusively pushed by the nonlinear interac-
tion. However, as a consequence of this excitation of q8,
which is the best provider in the system, the lower modes
in [−1|0.5] are largely stirred by the linearity. Notice the
dents in the intensity spectrum at ν = 4 and ν = 7, and
compare this with the corresponding 4 and 7 dips in the
last column of Table 1.

Modes with azimuthal symmetry, in particular those in
block [0|1.0], are indispensable for pipe turbulence, yet, as
it was shown in [1], have no means of linear amplification.
Their survival relies entirely on the nonlinearity. How this
happens is shown in Figure 8. The initial conditions, i.e.,
the modes q5 in block [+1|0.5] and q8 in [−1|0.5], were
selected to provoke an especially strong excitation of q1

in [0|1.0], confer with Table 4.

The intensity spectrum in the block [0|1.0] is atypic.
With most other initial conditions the even modes at
ν = 2, 6, 8 come out much stronger whereas q1 is sup-
pressed. Nevertheless we have seen that q1 in [0|1.0] is
important for rousing a provider in [+1|0.5] or [−1|0.5].
So the process shown here plays a key role for the suste-
nance of pipe turbulence. q1 in [0|1.0] is a toroidal mode
with strong components of velocity perpendicular to the
pipe’s axis.

Re
0      1000   2000  

log 10 Edis (0)

-4

-3

-2

-1

 0

Fig. 9. The double threshold for the onset of turbulence of
the 3×8–mode system depending on the Reynolds number Re
and on the initial strength of the disturbance Edis(t = 0). The
latter is a kinetic energy formed as in (2), however, its time de-
pendence (which decides whether being laminar or turbulent)
is calculated now with the full nonlinear system. Apart from
a multiplier, which determines the size of Edis(0), the initial
conditions are the same as for the trajectory shown in Fig-
ure 6, viz. just the least-damped Hagen modes were excited.
Full dots indicate that from this initial condition a trajectory
evolves which exhibits fluctuations as displayed in Figure 6
for 0 ≤ t ≤ 100. Trajectories that decay before t = 100 are
considered as laminar solutions. They are represented by open
circles.

Re=2000

r
-1     0      1 

∆U(r)

-0.1

 0.0

Fig. 10. Time-averaged velocity profiles as functions of the
radial distance r. Just differences ∆U(r) = U(r)−UHP(r) be-
tween the actual, full and the laminar Hagen-Poiseuille profiles
are plotted. r takes negative values, too, to depict what hap-
pens across a complete pipe diameter ranging from −1 ≤ x, y ≤
1. It is the line with the dots which exhibits ∆U(r). The fat
line displays the symmetrized profile {∆U(r) + ∆U(−r)}/2.
The Reynolds number is Re = 2000, the number of modes
is 48.

Comparing Figure 8 with Figure 7 you might notice the
similarity of the spectra in blocks [+1|0.5] and [−1|0.5], in
particular the dents at ν = 4 and ν = 7 of [−1|0.5]. The
similarity is due to the fact that most redistribution in
these blocks is caused by linear processes.

6 Turbulence-like features of the solutions

As was said already in the introduction, we may compare
properties obtained from the 3×N solutions of the Navier-
Stokes equation with measured quantities of real pipe flow
in order to justify the notion “turbulent” for our small N
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flows. We have already considered the irregular fluctua-
tions as one characteristic though qualitative feature of
turbulent flows. We now present two more properties, the
double threshold (Fig. 9) and the flattening of the pipe’s
velocity profile (Fig. 10), both calculated with the 3× 8–
mode system.

As we selected a special class of initial disturbances,
we cannot claim to produce a double threshold, which
can be compared quantitatively with measured ones, al-
though we always find the same qualitative structures.
Yet for all Reynolds numbers shown in Figure 9, we took
pains to minimize the number N(Re) of modes that still
produce turbulent-looking solutions. So N(2500) = 10,
N(2000) = 8, N(1500) = 9, N(1000) = 8. We do not
find long-lasting fluctuations for Re = 500, however, the
system generating most powerful but short and thus non-
turbulent fluctuations has N(500) = 10. In other words,
we strengthen the powerhouse and keep the consumption
as low as possible. Therefore it is not surprising to find
turbulent solutions at Re as low as 1000.

Long experience with similar systems has shown us
that the open circle at Re = 1000 and Edis(0) = 2 is not
accidental. It is as if all these systems had, at low Re,
only a limited provision of fluctuations which is sooner
worn out when the initial disturbance is gross.

As for the velocity profile we cannot expect sizeable
modifications of the Hagen-Poiseuille profile atRe = 2000.
No wonder the experimentalists present deformed profiles
usually at Reynolds numbers not less than 4000. We nev-
ertheless take the risk to show the velocity profiles at
Re = 2000 even for our reduced mode number solutions
and find results, Figure 10, which are compatible with the
measurements at higher Reynolds numbers.

The data was computed with the 3×8 system, and the
same initial conditions were imposed as for the trajectory
shown in Figure 6. At Re = 2000 most turbulent tran-
sients do not live long. For the time averages displayed
here only times t < 251.7 were available. Moreover, we
discarded the first short time interval to get rid of the ini-
tial dispersion (recognizable in Fig. 6) reducing the time
range used for averaging to 5.2 < t < 251.7.

Figure 10 indicates something that might be novel and
to be confirmed by experiments. Because the effects are
small, we have plotted the results as differences ∆U(r).

Concentrate first on the fat line. ∆U(r) was sym-
metrized to improve the statistics. Disregarding the large
fluctuations, the symmetrized profile looks almost as ex-
pected. We observe a depression at the center −0.4 <
r < 0.4 and enhancements closer to the pipe wall. Yet
the negative values of ∆U(r) at r ≈ ±0.9 look awkward.
The temptation to declare them as random blunders must
be forsaken since many other trajectories exhibit similar
features.

The reason behind these near-wall depressions shows
up when the nonsymmetrized profile is considered. Instead
of the central depression we see a retardation at r ≈ −0.9
and an acceleration for r > 0. At the transition to turbu-
lence in diffusers, this asymmetric flow pattern is known
as stall and was discovered experimentally, see Figure 175

in [15]. Based on the results from the tiny 3 × 8 system
we suggest now that similar stalls or blackflows guide the
onset of turbulence in pipes.

One should check, of course, this backflow by compu-
tations with more modes, and one must explain why these
blackflows are not observed at higher Reynolds numbers.
For this the results are already at hand. Figure 3 of [1]
shows a similar backflow at Re = 3000 computed with
6 × 20 modes. The only essential difference between our
findings here and those in [1] is that at Re = 3000 the
turbulent transients live much longer. The blackflow itself
is not stable. It appears at some position of the pipe’s
wall, then resolves and reappears somewhere else. So in
long-time averages the backflow phenomena are smeared
out.

7 Summary: Tools and applications

The systematic simplification of the equations describing
pipe flow is the main content of this paper. Four applica-
tions were derived from it.

The first result is 90% or even higher savings of com-
puter resources. The research on the physical mechanisms
of the onset of turbulence in a pipe is possible on a PC
already.

Second, as the reduction stopped at 48 degrees of free-
dom, we have now another argument for the fundamental
difference between turbulence in shear flows and in the
Rayleigh-Bénard system where a reduction to three de-
grees of freedom at onset was possible. The present result
puts additional evidence to the previous finding [14] that a
low-dimensional chaotic attractor in pipe turbulence does
not seem to exist.

Third, the reduction is more than just a diminution
of counts. It separates the energy providers from the
consumers. This gave insights into the working of the
Navier-Stokes equation: if the community of providers is
strengthened, the ODEs produce run-away solutions. If
the consumers prevail, fast relaxation to zero is unavoid-
able. Only the balance between powerhouse and consump-
tion enables turbulent-looking solutions.

Fourth, by a special example it was shown how the
powerhouse is refueled by the nonlinear terms in the
Navier-Stokes equation. We made efforts to identify the
most important nonlinear mechanism. Nevertheless we
must concede that our favorite mechanism is only one
among many others.

Two tools were used for the reduction: the q-modes
and the closed communicating classes, consisting of blocks
which are characterized by symmetry labels.

A small closed communicating class simplifies the non-
linear interactions. The method is applicable only if the
basic flow exhibits symmetries that categorize the modes
in blocks. For pipe flow, three of these blocks can be put
together to form a closed communicating class which is
sufficient for a crude description of turbulence.

The q-modes are obtained from the eigenfunctions of
the Hagen-Poiseuille linearized Navier-Stokes equation by
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plain orthogonalization employing the QR-decomposition.
Surprising is just the backward sequence (5) as it produces
q-modes which are ordered according to their quality (2).

We acknowledge support of this wook by the German-Israeli
Foundation (GIF).
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9. J. Stoer, Einführung in die Numerische Mathematik I

(Springer, Berlin, Heidelberg, New York, 1979).
10. G.H. Golub, Ch.F. van Loan, Matrix Computations, 2nd

edn. (Johns Hopkins University Press, Baltimore, 1989).
11. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetter-

ling, Numerical Recipes in C (University Press Cambridge,
1988).

12. I. Schur, Math. Ann. 66, 488 (1909).
13. E. Parzen, Stochastic Processes (Holden-Day, San Fran-

cisco, 1962).
14. U. Brosa, J. Stat. Phys. 55, 1303 (1989) and references

therein.
15. M. van Dyke, An Album of Fluid Motion (The Parabolic

Press, Stanford, 1982).
16. S. Grossmann, Rev. Mod. Phys. (to appear, 1999).


